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Abstract—Limiting solutions are developed for the Green’s function of the extended Graetz problem of
mass (or heat) transfer, satisfying absorption boundary conditions, in flat channels. A differential equation
directly satisfied by the Green’s function of the transmission flux is derived. For finite Peclet numbers, the
non-existence of similarity solutions is pointed out. Both uniform and parabolic velocity profiles are
considered. While all orders of boundary layer solutions are obtained for the former case, only leading
terms are derived for the latter, based on the approximation of a linearized profile near the wall. It is
concluded that for sources confined close to the absorbing boundary, the axial diffusion effects cannot be
ignored even at relatively large Peclet numbers.

INTRODUCTION

THE cLAssICAL Graetz problem, along with its exten-
sion to include axial diffusion (or conduction), is of
interest in several mass (or heat) transfer applications
in channel flows and has been treated extensively by
several investigators [1-5]. Many practical appli-
cations involve the calculation of the Nusselt number
and the penetration fraction for varying source dis-
tributions inside the channels, as well. The analytical
solutions to these problems are generally presented
either in the form of eigenfunction (Graetz type) series
or in the form of limiting (Lévéque type) solutions.
While the former type of solutions converge rapidly
for large axial parameters measured from the point of
discontinuity in the source, the latter do so for small
axial parameters. In this paper, the Lévéque type solu-
tions are investigated for mass transfer with axial
diffusion (i.e. finite Peclet number, Pe), from a basic
point of view, With the exception of Newman’s [6]
work, little appears to be available on this. However,
Newman’s extension is addressed to a particular type
of source, namely uniform inlet distribution. It has an
unsatisfactory [7] feature of adding the axial diffusion
term to the mass balance equation and treating it as
an initial value problem, in semi-infinite channels.
Besides, the usual procedure of expanding the dis-
tribution function in terms of similarity variables, is
not applicable for finite Pe. This is because when Pe
is finite, the differential equation is not invariant under
a stretching group of transformations, and therefore,
it does not have similarity solutions. Moreover, the
traditional method cannot be extended for upstream
transport which is an important consequence of axial
diffusion. Apart from this, the conventional assump-
tion that at large Peclet numbers, the effect of axial
diffusion on the parameters of downstream transport
is perturbatively small, is not universally valid. In
fact, when the sources are confined to the diffusion

boundary layer, a significant upstream mass transfer
will occur even at high Peclet numbers, thereby sub-
stantially reducing the fraction available for down-
stream transport. Such boundary layer sources arise in
connection with the sampling of recoil atoms emitted
following the radioactive decay of their parent atoms
initially deposited on the channel walls [8]. In order
to analyse this effect quantitatively, the point source
response of the extended Graetz problem is inves-
tigated in the limiting region, via Green’s function and
Fourier transform techniques, both for uniform and
parabolic velocity profiles.

FORMULATION

The problem for rectangular channels is formu-
lated. Its extension to cylindrical ducts is rather
straightforward. Let H be the half width between the
channel walls, which are assumed to be infinite in
extent. Let the X—Z plane coincide with one of the
walls, with xe(—o0, ), and the Y-axis be per-
pendicular to them { y [0, 2H1}. The fluid is assumed
to flow in the positive direction of the X-axis with
a centre-line velocity v,,. It is required to study the
response of this channel (with absorbing walls) to a
line source placed at x,, y, perpendicular to the direc-
tion of flow and parallel to the walls. The Peclet
number and the non-dimensional coordinates are
defined as

Pe =v, HID
where D is the diffusion coefficient of the particles
n=y/Hel0,2]
and
1 = (%/Pe)

where
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NOMENCLATURE
Ai(x)  Airy function of the first kind X x/He(—w, )
a, Pe(2n+n) y Y (lateral) coordinate € {0, 2H].
b, Pe(2n+2—n)
¢ real number (0 < ¢ < 1) Greek symbols
D diffusion coefficient of particles o(u) Dirac delta function
F(x) integral defined in equation (A3) ¢ &
g(n, uine, ) Green’s function for the ] reduced lateral distance (y/H) [0, 2]
concentration field o reduced lateral distance for the source
H lateral half width of the channel O0(n. )  Green’s functions for the transmission
J*(n,u) cumulative deposition fluxes flux
Ko(x), Ki(x) modified Bessel functions of u reduced axial distance, Dx/v, H*
orders 0 and 1 Mo reduced axial distance for the source
Pe Peclet number, v,,H/D v axial variable for plug profile, Pe £
p.q complex integration variables 14 lateral variable for parabolic profile,
Ufu,v) function defined in equation (10b) for n(2Pe)'?
j=0,1 p real integration variable
v(n) 1 for plug and (24— »*) for parabolic T axial variable for parabolic profile,
velocity profiles (2Pe)"?
U centre-line velocity of the stream ¢(n,w) solution of equation (6a)
X (axial) coordinate 0 transform variable conjugate to .

X = (x/H)e(— o0, o).
The Green’s function g(1, u/n,, o) for the con-
centration distribution satisfies the equation
0’g g

5?+Pe Epe (11)~+5(u Bo)6(—ne) =0

(1a)

where v(n7) (1 for plug flow, 25 —n* for the parabolic
profile) is the velocity profile and 6 the Dirac delta
function. The boundary conditions are

= 92, u/no, uo) = gn, + /Mo o) = 0.
(1v)

In most of the situations, the quantity of practical
interest is the Green’s function for the transmission
flux, which is defined by

g(Os #/']09 Ho)

O(u/Mos o) = JO ) [o(n) — Pe*(8/0)1g(, 1o, 1o)dn,

pe(—oo, ). (2)

A differential equation (in the source coordinates,
e and p— po) for 8(u/n,, o) may be easily constructed
from equation (la) via its adjoint equation by the
well-known procedure [9]. Upon setting u, = 0, drop-
ping the suffix from #,, and redefining 6 = 0(n, u), one
obtains

60+ 1 2%
o’ " Pet o’

—(1/Pe)&'(w) =0, 7ef0,2],

v(n) - +v(n)5(u)
(3a)

pue(—oo, o)

along with

0(0, 1) = 0(2, 1) = 0(n, £ o) =0. (3b)

it follows from equation (3a) that
30 )
0(1,0)~0(7.0") = 1 and - (7.0%) = - (7,0 ).
i ou

(3c)

Besides, 0(n, p) is negative when u < 0. The Nusselt
number J*, which is the total quantity deposited up
to a length u (say u > 0) is given by

I, 1) = 0(n,0")—0(n, 1), u>0. 4

Therefore, the knowledge of 6(y,0%)—which will
be substantially different from unity for boundary
layer sources due to upstream transmission—is essen-
tial for the calculation of the deposition flux. It should
be remarked here that when Pe = oo, equation (3a),
along with equation (3b) is completely equivalent to
the classical Graetz problem. Hence its limiting solu-
tions are classical Lévéque solutions. Similarly, equa-
tion (3a) can be shown to be equivalent to a heat
transfer problem [10] with a step change in tem-
perature at ¢ = 0 on the channel walls. However, this
equation cannot be split up into a self contained set
of one-sided equations separately for p < Gand p > 0,
thereby making the Newman procedure [6] of simi-
larity expansion inapplicable. On the other hand, the
well-known asymptotic methods in Fourier inversion
offer powerful tools for this purpose. Both uniform
and parabolic velocity profiles will be considered in
the next section. While the latter case is more impor-
tant from a practical point of view, the former cor-
responds to certain moving source problems [11] and
is mathematically simpler.
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LIMITING SOLUTIONS

The upstream mass transfer due to a steady source
is not solely due to axial diffusion, but arises as a
consequence of the combined effect of axial diffusion
and the absorption boundary conditions at the walls.
In fact, in the absence of absorption, the drift and the
diffusion currents are balanced in the upstream region
due to statistical equilibrium. The above statement
also implies that when the sources are far removed
from the boundaries (i.e. when the absorption is
small), the upstream transmission vanishes asymptot-
ically. In the limit of small y, therefore, a significant
contribution to  for £ <0 (or to 1-86 for > 0)
arises only if the source is close to one of the bound-
aries. Thus, the limiting solutions are also boundary
layer solutions. All orders of such solutions will be
obtained for plug flow; for a parabolic profile, those
beyond the linearized (i.e. Couette flow) regime are
difficult to obtain.

Now, upon using the method of Fourier transforms
with respect to the variable y, the formal solution to
equation (3a) may be written as

Lol

1 . d
001, ) = 51 + 3 | o (—io) o) 7,
ne(=o,0) (9

where ¢(n, w) satisfies the following differential equa-
tion with respect to #:

¢"(n, 0) +iolv(y) + (iw/Pe?)]d(n, w) =0, nel0,2]
(6a)

along with

0, 0) = ¢Q2,0) = 1. (6b)

When the fluid is stagnant, i.e. v() = 0 (or Pe —
0), the solutions of equation (6a) are linear com-
binations of exp [+ |w|#/Pel. This, along with bound-
ary conditions (6b) reduces equation (5) to

i 2
6(n. %) = (1/n) tan~" [ﬁ‘h—((%z)—)]

m(l/n)tan"[q/i], Pe=0. (7)

This is an exact result. Its importance lies in the fact
that, irrespective of the form of the velocity profile,
all boundary layer solutions corresponding to finite
Pe, approach the second form of equation (7) in the
limit #, £ — 0. This may be easily seen by noting that,
the form of 6(n, u) as £ (or u) — 0, is governed by
the form of ¢(n,w) as |w| > 0. When 5 — 0, the
asymptotic (Jw| — o) solution to equation (6a) is
exp (—|w|n/Pe), irrespective of the form of v(y) so
long as it is bounded, and this readily integrates in
equation (5) to yield the second form of equation (7).

HMT 31:10-F
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Plug flow: v(n) = 1
In this case, equation (6a) has the solution
cos [(1—#)(iw) V*(1 +iw/Pe*)'}]
o0n,0) = ) "1 9

cos [(iw) (1 +iw/Pe?)'Y
Upon transforming, iw = —Pe’q and v= P’ =
Pe %e(—o0,00) and substituting equation (8) in
equation (5), one has

1 v 1
9("’v)=§<1+|7|)—55

= | exp (vq) cosh {Pe(1—n)g"*(1—¢)"*} d
X A gcosh {Peg"*(1—g)''%} E

—w<v<woand 0<c<l. (9)

As shown in the Appendix, equation (9) may be
simplified as follows :

00 1) = € 3. (=1VTU@ps )+ Uslbr)

+v{U,(a,,V)+ U,(5,,v)}], ve(—o0,0) (10a)
where a, = Pe(2n+n), b, = Pe(2n+2—17) and

Uz = f [P+ K +v?) ] dr,

j=0,1. (10b)

(K, and X, are the modified Bessel functions.) Besides
Ui(z, —v) = U,(z,v) and [12a)

Uj(oo, [v]) = m|v| 7 exp (= [v/2), j=0,1. (10c)

The successive terms of equation (10a) represent
the higher order solutions arising out of the reflection
effects from the opposite wall. Either when |v| ~ 0 for
a given n or when n ~ 0 for a given v, it may be
shown from equations (10a)—~(10c) that the leading
approximation is

€

1.1t °°
0, V) ~ 5 45— L [Ko{é\/(t2+v2)}

en

v
+ W K, {51\/([2 +V2)}:'dt. (11)

Equation (11) is an exact result for the case of mass
transfer over a single plate (y = 0) as well. It also
satisfies all the requirements (equations (3b) and (3c))
including those specific to the boundary layer solu-
tions as mentioned at the beginning of this section.
Moreover, the quantities, 6(y, +0), which are
required for the computation of J may be easily evalu-
ated from equation (11) by setting |v| = 0. From this,
it follows that 8(y, £0) - +1/2, as 1 — 0.

As Pe — o0, it may be verified from the well-known
asymptotic expansions for K, and K, that, for y > 0,
equation (10a) goes over the usual error function
series in terms of the similarity variable, n/Z\/ u. On
the other hand, when p < 0, it may be shown that

0(1,v) ~  —(1/2/m)Penly| =2

xexp [v+Pe’n*/(4v)], v<0. (122)
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FiG. 1. Variation of the downstream transmission flux [#(y, v}, v > 0] in flat ducts with respect to the lateral

boundary parameter, Pen, for a few limiting values of the dimensionless axial parameter v (= Pe £) in the

case of a uniform velocity profile (equation {11}). (Pe = Peclet number, 5 and ¥ are respectively the lateral
and the axial distances measured in terms of the channel half width.)

The solutions represented by equation (11) are plot-
ted in Figs. | and 2 separately both for v > 0 and
v < 0. It may be seen from Fig. 2 that the magnitude of
the upstream transmission flux possesses a maximum
with respect to 5, which gradually shifts to a value of 0.5
atn = 0 and v = 0. This maximum arises due to the
interplay of the two competing processes, namely the
statistical equilibrium when the source is far away and
the absorption condition when the source is near the
wall. Approximately, this maximum can be shown
{consistent with the approximations involved in deriv-
ing equation (12a)) to occur at

Maw ~ (22 p< 0. (12b)

It must be mentioned in passing that the series
representation {equation (10a)) for 8(x, v) can also be
converted into a real integral representation, which
reduces to equation (7) for Pe = 0. However, for
Pe = oo, such a real integral representation does not
exist.

Parabolic profile : v(n) = 2n~n>

For this case, the solutions to equation (6a) are
the parabolic cylinder functions. If one develops a
perturbation around the centre-line (y = 1) using the
asymptotics of Olver [13], it may be shown that the
Towest order solution is identical to that for plug flow,
i.e. equation (10a). While any order of perturbative
expansion may be developed this way for sources close
to the centre-line, it does not lead to a boundary layer

solution which will be superior to the ubiguitous result
of equation (7). One can of course use somewhat
involved expansions of Olver for ¢(y,w) around
n = 0; however, a more direct way to obtain leading
solutions would be to approximate the parabolic vel-
ocity profile by a linear one in the boundary layer
region.

In this spirit, one sets, 2n—#* ~ 25 (y = 0) and
relaxes the domain of 7 as &[0, o0), in equation (6a).
Upon substituting g = —iw/Pe’ and seeking the solu-
tion of equation (6a) which tends to unity as # -0
and vanishes as y — <0 (g # 0), one has

Ail2Pe* ¢)" ' (n—q/2)]

dln.q) = A= (Pe/) P ()

=0 and ¢g=iw/Pe’. (13)

In the complex g-plane, ¢(1, ¢) has a branch point
at ¢ = 0 with the branch cut extending along the nega-
tive real axis, and a series of simple poles along the
positive real axis, i.e. the complete set of eigenvalues
has both discrete and continucus parts. Cor-
respondingly, the downstream (g > 0) flux will be
given by an integral along the branch line and the
upstream (u < 0) flux will be a series of residues evalu-
ated at the poles. This is unlike the plug flow case
in which, in the boundary layer approximation, the
branch cut extends on a part of the positive real axis
as well (Appendix).
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Fi1G. 2. Variation of the upstream transmission flux [—8(#, v), v < 0]} in flat ducts with respect to the lateral

boundary layer parameter, Pe#, for a few limiting values of the dimensionless axial parameter v (= Pe %)

in the case of a uniform velocity profile (equation (11)). (Pe = Peclet number,  and £ are respectively the
lateral and the axial distances measured in terms of the channel half width.)

Case (i) : i > 0. In view of the remarks made above,
one may reduce equation (5) using equation (13) to
the following real integral for the downstream flux,
after some rearrangement :

o6 =2 [ evp (st
B~ (0]~ Bil L+ A~ Ll

[Aiz[—é'u“]—l-Bil[—Cu“]]]de‘, >0 (14)

where, 1, £ (or {) are the boundary layer variables for
Couette flow, defined by

E=(2Pe) V7, [ = &

and t = (2Pe’)?p = %2Pe)V2  (15)

When Pe = oo, equation (14) can be shown to
reduce to the well-known classical Léveque limit in
the similarity variable, nu~'?. Figure 3 shows the vari-
ation of 8(&, 7) (equation (14)) as a function of ¢ for
a few values of 7.

Case (ii): u < 0. The poles of ¢(n,¢) in equation
(13), occur at g,= (2/Pe)"*}* where —r,
(n=0,1,...) are the zeros of the Airy function Ai.
The residues of equation (5) may be easily evaluated
at these poles to yield

Ail—r,+ &4

A=) 7<0.

3 @
0¢) =~ ¥ explr]

(16)

When |z| is small, a large number of terms would
be required in the above series. For large n,
r. ~ (3n/2)*?(n+3/4)*". Figure 4 shows the variation
of |6(&,7)] as a function of &, for a few values of 7. As
in the case of plug flow, here too, the upstream flux
possesses a maximum which tendsto0.5at ¢ = 7 = 0.

For large Pe and small |1|, instead of equation
(16), a simpler approximation may be derived in the
following way (this applies to downstream flux as
well). Since, g (= —iw/Pe?) occurring in equation (13)
is essentially an integration variable in equation (5),
it may be transformed to p = 1 —¢/2y, for t < 0. Once
expressed in terms of p, equation (13) may be reduced,
by a careful use of asymptotics for the Airy functions,
to

d (£, p) ~ exp[—Ep(1—p)'7).

This is of the same form as that for plug flow (Appen-
dix), and hence

(¢, 1) ~ (1/2m) exp [£1/2][Ee U (82, £0) + Up(E2, )]
amn

where the functions U, and U, are defined in equation
(10b). Incidentally, the same expression is valid even
for T > 0, under similar approximations. Comparison
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F1G. 3. Variation of the downstream transmission flux [8(¢, 1), © > 0] in flat ducts with respect to the lateral

boundary layer parameter, ¢ [=5(2Pe)"?], for a few limiting values of the dimensionless axial parameter

7 {= X{2P¢)''?] in the case of a parabolic velocity profile (equation {14)). {Pe = Peclet number, 7 and Tare
respectively the lateral and the axial distances measured in terms of the channel half width.)
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F16. 4. Variation of the upstream transmission flux [—0(&, 7), © < 0] in flat ducts with respect to the lateral

boundary layer parameter, £ [=#(2Pe)"?, for a few limiting values of the dimensionless axial parameter

7 [=%(2Pe) "] in the case of a parabolic velocity profile (equation (16)). (Pe = Peclet number, n and ¥ are
respectively the lateral and the axial distances measured in terms of the channel half width.)
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of these with the full equation (equation (14) or (16))
suggests a good agreement between the two in the
boundary layer region (£ = 0).
For 1 < 0, using equation (17), the maximum in the
upstream flux can be shown to occur at
Cmax ~_(=1/3)'°

~07

1< 0. (18)
In reality, however, under Couette flow approxi-
mations, the point of maximum does not indefinitely
increase with respect to |z} as predicted by the above.
As 1 — — 00, itis limited by the first term in the series
(equation (16)), i.e. &pa — 1.0167 as 7 = — 0.

CONCLUSIONS

In this analysis, starting from the differential equa-
tion directly satisfied by Green’s function for the
transmission flux, ope has been able to obtain all
orders of boundary layer solutions for a uniform vel-
ocity profile and only leading terms for a parabolic
profile. As can be seen from this, the upstream flux is
nearly 0.5 for boundary layer sources for both the
velocity profiles, thereby substantiating our earlier
assertion regarding the dominating effect of axial
diffusion in such cases. Therefore, for realistic bound-
ary layer sources extending in the positive X-direction
(say) a significant wall deposition in the entrance
region would be due to upstream diffusion effects.
For general sources, a detailed calculation of the wall
deposition must take into account both the con-
tributions from all source points.
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APPENDIX. EVALUATION OF THE INVERSION
INTEGRAL (EQUATION (9))

Upon using the identity
fcoshz] ' =2) (~1yexp[—(2n+1)z], z>0 (Al
n={

equation (9) may be rewritten as

00n,v) = » (1+ —”»)- S (- 1Y[F@)+Fb)] (A2)
2 'V[ n=0
where, a, = 2n+n)Pe, b, = (2n+2—n)Pe and

F(x) = (2a))~} H.im

100

exp fvg—xq*(1—-¢)'7lg ' dg,
v>0and 0 <c< 1. (A3)

The integrand in equation (A3) has branch pointsatg =0
and 1. The corresponding branch lines are between [0, — o0)
and {1, c0). For v > 0, upon constructing a contour on the
negative g-plane, equation (A3) may be reduced to the fol-
lowing integral over the real line:

F(x) = 1—(7r)"f e "sin [xp"2(1+p)"?p~"dp, v>0.
G

(A4)

Upon transforming the integration variable to
t = 2p"*(1 + p)'* and noting the following identities, namely
[12b}:

Kol(@+5%)'"]
= jw A+~ exp[—b(1+13)""]cos (ar)dr  (AS)
and
Ki(u) = — Ky} (A6)
one arrives at

vi2 {'x
Fx)=1~ %EJ; (e +vH K, {%\/(12-4-\/2)}

+K, /(@ +v))1ds, v>0. (A7)

Upon substituting equation (A7) in equation {A2) and on
using equation (10b) and the identity, X.° (—1)" = 1/2,
one arrives at equation (10a) valid for v > 0,

For v < 0, upon transforming the integration variable in
equation (A3) to p= 1—g, and following the same pro-
cedure as above, one arrives once again at equation (10a).
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SOLUTIONS DE COUCHE LIMITE AVEC FONCTION DE GREEN POUR LE
PROBLEME GENERAL DE GRAETZ

Résumé—Des solutions limites sont développées pour la fonction de Green dans le probléme de Graetz du
transfert de masse (ou de chaleur), satisfaisant les conditions aux limites d’absorption dans les canaux
plats. On dérive une équation différentielle directement satisfaite par la fonction de Green de la transmission
du flux. Pour des nombres de Peclet finis, on dégage I'inexistence des solutions similaires. On considére les
profils uniformes et paraboliques de vitesse. Alors que tous les ordres des solutions de couche limite
sont obtenus pour le premier cas, seuls les termes principaux sont dérivés pour le dernier, a partir de
Papproximation d’un profil linéarisé prés de la paroi. On conclut que pour des sources confinées prés de
la frontiére absorbante, les effets de la diffusion axiale ne peuvent étre ignorés méme pour des nombres
de Peclet relativement grands.

GRENZSCHICHT-LOSUNGEN DER GREEN'SCHEN FUNKTION FUR DAS
ERWEITERTE GRAETZ-PROBLEM

Zusammenfassung—Es werden Losungen fiir Grenzfille der Green’schen Funktion fir das erweiterte
Graetz-Problem des Stoff- (oder Wirme-)transports in flachen Kanilen entwickelt, die den Absorp-
tionsrandbedingungen geniigen. Es wird eine Differentialgleichung abgeleitet, der die Green’sche Funk-
tion fir die libertragene Stromdichte direkt geniigt. Fiir endliche Peclet-Zahlen wird das Fehlen von
Ahnlichkeits-Lésungen aufgezeigt. Es werden sowoh! gleichférmige als auch parabolische Geschwin-
digkeitsprofile betrachtet. Wihrend man im ersten Fall alle Ordnungen der Losung der Grenzschicht-
gleichungen erhilt, werden—basierend auf der Niherung linearer Profile in Wandnihe—im zweiten
Fall nur die Hauptterme abgeleitet. Es wird gefolgert, daB die axiale Diffusion fiir Quellen nahe der
Absorptionsgrenze selbst fiir relativ grofle Peclet-Zahlen nicht vernachlissigt werden kann.

PEHNIEHMS B IMPUBJIMKEHHUH NOI'PAHHYHOI'O CJIOSI OBOBIEHHOM 3AJIAUM
T'PETHA C MIOMOIIBIO ®YHKIIMN I'PUHA

Anporamms—IToyueHbl yAOBICTBOPAIOUIME TPAHUYHLIM YCIOBHAM abcopOuuu npene/bHble pelleHns ¢
nomoubio Gyrknuyu ['puna oGobmernoli 3agaum T'peTna o mepeHoce Maccel (WM TerUla) B IJIOCKMX
kaHajax. BoiBeneHo auddepeHuManbHOE ypaBHEHHE Ul MAcCOTIEPEHOCa, HEITOCPEACTBEHHO peliaeMoe ¢
noMouikio Qyrxiun 'pusa. OTMEYEHO OTCYTCTBHE AaBTOMO/ENBHBIX PEIIEHHH NPH KOMEYHBIX 3HAYCHUAX
ypcna Iexne. PaccMoOTpeHbl Kak OXHOPOHbIE N0 CEYEHHMIO, TaK M napabonnyeckue poduIM CKOPOCTH.
B TO BpeMs Kak B NEPBOM Ciy4ae NOTYYEHBI PELIEHUs YpPaBHEHH TOrPAaHAYHOTO CJIOA BCEX NOPAAKOB, B
NOCHEOHEM OMpedeNieHbl TOJLKO IJIaBHbIE BEJMMHHBI NyTeM AannpokCHMailu JIHHEapH30BaHHOTO
npoduns y crenku. Creslad BBIBOA O TOM, YTO B CJIy4ae KOTJa MCTOYHHKH HAXOIATCA BOJIM3HM MOIIO-
warolIe# rpaHMIbL, HeNb3s npeHeOperath adpexTamu ocepoit nuddy3MM Haxke NPH OTHOCHTENLHO
6onbirnx 3HaueHnsAX yncna Ilekie.



